Battle of the Epic Whirlwinds: Hurricane Vs. Tornado

Earth Satellite Space

Versus

Destructive Powerful Tornado

In the Free State of South Africa, 2012 was a year marked by an outbreak of severe thunderstorms. This province lies quite far inland of the subcontinent, to the northeast of Cape Town and to the west of the Drakensberg; the magnificent mountain chain that borders the eastern coastline of South Africa. These severe thunderstorms caused quite a bit of grief for the inhabitants of the Free State, levelling 55 houses and hospitalising 5 people, according to All Africa online publication. But in addition to the heavy rains, lightning and wind damage, these thunderstorms had the ill-grace to drop a couple of tornadoes too!

To put things into perspective, South Africa is not a country known for tornadoes. If you’re thinking of tornadoes, your imaginative context is probably located in the aptly named ‘Tornado Alley’ in the mid-western states of America. Now, as someone who has a degree in atmospheric science, you can imagine how many questions I was fielding from people who had heard about the severe weather events I just mentioned. Not questions as such: statements rather. People rarely ask me questions about the weather. I think they’re afraid of the answers. I can handle that… but what I couldn’t handle was the fact that people were confusing hurricanes with tornadoes!

“Did you hear about the hurricanes in the Free State?”

Portrait of young woman slapping hand on head having a duh momen

To anyone in atmospheric, Earth, ocean or any related sciences – regardless of your specialization – confusing tornadoes with hurricanes is like confusing your grandmother with Megan Fox. It’s like confusing an elephant with a pineapple. The concept of a hurricane tearing across the Free State is about as alien to the weather educated as a giraffe cavorting around the North Pole. Wearing snow shoes.

But, before you cringe at the memory of you making this rather Herculean error, one must take into account that the majority of you out there aren’t weather educated. That’s perfectly all right! We’re going to change that right now. Hurricanes and tornadoes: what’s the difference? Moreover, what’s the big deal if you get them confused? Well, when it comes to these two somewhat (ok, VERY) tempestuous weather phenomena, size really, really, REALLY…

… really, REALLY, really, REALLY, REEEEEEEEALLY does count.

Hurricanes: Kicking Ass and Taking Names

Hurricane Fran satellite image

Satellites captured this fairly terrifying image of Hurricane Fran hurtling towards North Carolina on the 5th September 1996. “Fran” caused so much trouble that they decided to NEVER call another hurricane “Fran” again. 

FYI, hurricanes are named alphabetically according to their order of development during the hurricane season. The first to appear will be named something beginning with an ‘A’, the second ‘B’ and so on and so forth. Hurricane Fran was therefore the 6th fully fledged tropical cyclone to develop that season and one whose limelight was solidly claimed in 2005 by Katrina and again in 2012 by Sandy. Those bitches!

Hurricanes are large tropical storms born over the equator. Fed by prodigious updrafts of hot, moist, sexy air, these giant swirling monsters generate, via condensation alone, 200 times the electrical generating capacity of the entire freaking planet, according to the Atlantic Oceanographic and Meteorological Laboratory. For those of you who like numbers or are easily impressed by them, this equates to 600,000,000,000,000 Watts. This is not even to mention the amount of energy generated by hurricane winds, which is an additional 1,500,000,000,000 Watts of unbridled weather rage!

I don’t even know what that number is… a billion million? A trillion zillion billon million?

Ooh! Aah! Hurricane Statistics

Windy Coast huge waves

  • Damage: Should they make landfall, hurricanes can cause tens of billions of dollars’ worth of damage. Katrina was only a category 3 storm when it had its fender-bender with the Mississippi Gulf Coast. And yet its damage was estimated at $81,000,000,000!
  • Storm Diameter: Hurricanes are huge systems with an average diameter of 800 km (500 mi), although Hurricane Carla, which raged into the Texas coast in 1961, was an especially big girl at 1280 km (800 mi) across.
  • Wind speeds: Hurricanes are wrathful systems with category 5 storms (you do not get larger) generating winds of over 250 km/hr or 156 mi/hr.
  • Associated Severe WeatherHurricanes are social creatures. They have loads of friends they like to bring to the party they tend to gatecrash. These include torrential rainfall, thunderstorms, lightning, hail and storm surges, which is an increase in average sea level that can be in excess of 5 meters or 19 feet! To add insult to grave injury, hurricanes can even generate tornadoes.
  • Weakness: For all their size, energy and capacity for total annihilation, these tropical super storms cannot survive over land. They require a tireless volume of hot, moist air – as is found over the equatorial oceanic regions – in order to preserve storm motion and momentum. That dry continental air just won’t do. Plus, all the friction and turbulence caused by onshore topography (mountains and such) tend to break up the party pretty quickly.

Tornadoes

“Cow…

‘Nother Cow!”

“Actually I think that was the same one”

– ‘Twister’, 1996

I regard tornadoes the same way a sadomasochist regards nipple clamps: they’re deliciously terrifying. Having said this, my opinion is fantastically unfounded because I have never, ever witnessed or had my house relocated by a tornado. If I had, I would probably drop the enthusiasm a notch.

Strong tornado in Kansas

 A Kansas tornado tears across a country roooooad, take me hooooome.

A tornado is a raging column of rotating air that extends from the ground to the base of its parent cumulonimbus cloud, “Cumulonimbus” being the longest and fanciest word everyone remembers from High school geography. I know this because every time I tell someone I have a background in weather, they say, “Oh! So you, like, studied cumulonimbus clouds!”

Yeah, something like that buddy.

Tornadoes are generated by severe thunderstorms in atmospheric environments full of wind shear and abundant lower level moisture, amongst other ingredients. Next time you’re in the bath or swimming pool, make your hand flat, put it in the water and paddle. You’ll notice tiny little vortices or whirlpools that spin off in either direction.

“Wind shear” really just refers to two masses of air moving at different speeds and/or different directions to each other. And, just like your hand in the pool, shear in the atmosphere generates the same kind of ‘whirlpools’ in the air, although you can’t see them because air is invisible. What happens next in tornado genesis is a powerful updraft of air, which pushes these horizontal columns of rotating air vertical. And this is when shit starts getting real.

Severe weather thunderstorm.png

A gorgeous supercell thunderstorm at sunset. This cloud formation, known as a “mesocyclone” to academics and a “mothership” to nerds, is the atmospheric platforms from which tornadoes are commonly spawned.

Ooh! Aah! Tornado Statistics

  • Damage: It just takes one tornado straying into a heavily built up area to rack up damage totals that would bankrupt an entire country. In May of 2011, a single tornado tore through Joplin in Missouri – a city of 50,000 inhabitants. The reports that emerged at the time estimated the damage of insured property alone to be in the region of $3,000,000,000 (billion), and all from a single tornado. This doesn’t even take into account the uninsured losses suffered.

Tornado damage in Lapeer, Michigan.

On the brighter side – Tornado, 1: Insurance companies, 0.

  • Wind Speeds: Tornadoes are violent creatures. The wind speeds that tear around the funnel, more specifically, of F5 tornadoes, have been clocked in at over 500 km/hr or 315 mi/hr. This is more than half the cruising speed of a commercial airliner.
  • Associated Severe Weather: Like hurricanes, tornadoes are social. You will generally find them hanging out with lightning, torrential rain, giant hailstones, wind (duh) and the occasional cow or 18-wheeler semi-trailer.
  • Lifespan: For all their fury, tornadoes are relatively short-lived with the longest ‘twister’ on record having raged on for 3.5 hours. This suspected F5 tornado, dubbed the Tri-State Tornado, tore through 350 km (220 mi) of Illinois, Missouri and Indiana on the 18th March in 1925, leaving almost 700 people dead in its wake.

While hurricanes may boast more impressive size statistics than a single tornado, one should note that the kinds of thunderstorms that generate tornadoes are rarely isolated and often travel in waves with one thunderstorm cell feeding the formation of several others. In 2011, in fact, the National Severe Storm Laboratory recorded the most prolific outbreak of tornadoes in American history! Between April 25th and April 28th 2011, a staggering 358 tornadoes were recorded, with the majority of them having touched down within a single 24-hour period. Thanks to a much more sophisticated weather forecasting and tornado warning system, this outbreak caused half the death toll as the single Tri-state Tornado of 1925.

Class Dismissed: Your Take-Home Message

real airport weather map Hurricane Frances

There are many big and important differences between hurricanes and tornadoes, most of which are related to scale: scale in size, in wind speeds, in damage done and in lifespan. Hurricanes are huge weather systems that last days and can cause widespread destruction. Tornadoes are much, much smaller weather phenomena generated by severe thunderstorms. Yet, in spite of their exponentially smaller size and shorter life spans, they can do incredible localized damage and frequently boast wind speeds greater than even a Category 5 hurricane.

So, to sum it all up and pack it in a nutshell:

Tornadoes can rearrange your back garden and perhaps relocate your house.

Hurricanes can rearrange your province and perhaps the entire eastern coastline of your country.

The 2015 "Slushy" Waves of New England

It’s too bad that seawater is salty, because with a bit of sweet flavouring, everyone would have had access to unlimited slushy “Slurpee” a year ago, courtesy of Mother Nature!

Video Source: “Giant Frozen Waves Nantucket Beach” Uploaded by Galaxy 11

The United States spent much of February of last year in the frigid grips of a record-breaking icy winter. Yet, in addition to the usual suspects, which include deep snow and biting winds, the cold would seem to have even won over the briny seawater of the north Atlantic Ocean. This video shows a series of images of ocean waves breaking on the shores of Nantucket in New England (northeast USA), only, there seems to be something distinctly different about these waves!

The photographer, Jonathan Nimerfroh, is an avid surfing enthusiast and on a trip to the beach, he noticed something odd about the horizon. As it turns out, the temperatures are so low in the area the water has begun to freeze and so, what we are looking at are giant slushy waves! These icy waves have also been aptly called “Slurpee waves”

The maximum temperature on the day these pictures were taken was at a teeth-chattering -7 degrees celsius (17 degrees Fahrenheit).

What’s truly amazing about this is that salt is known to lower the freezing point of water to well below zero degrees celsius. This is precisely why we throw salt over our driveways to prevent them from icing up. The fact that even the salty seawater in northeast United States began to freeze is testament to the uncharacteristically cold winter they had last year.

Big Holes

Get Your Mind Out The Gutter!

Whoever coined the title of this video is a genius: the second I clapped eyes on it, the inner depraved version of myself immediately demanded that I click on the link to find out more about Earth’s biggest and most mysterious holes. As it turned out, the video is quite interesting, albeit well-behaved. So, if you’re desperately trying to look busy and important while waiting for a date, or want to avoid that annoying dude from accounting during your lunch break, here’s a fabulous and educational 10 minutes well spent.

P.S. Donald Trump was accidentally omitted, but should have been featured as Earth’s biggest A-hole.

Video Source: “15 Strangest Holes On Earth” Uploaded by Planet Dolan to YouTube channel www.youtube.com/watch?v=pxSkbBXpMjo

Tsunami!

Huge ocean waves tsunamis

It’s a killer club song by DVBBS & Borgeous and it’s coming to a Pacific neighbourhood near you to totally ruin your day.

Tsunami!

Tsunamis are big waves… the result of a monumental displacement of water that usually takes place at depth somewhere on the ocean floor, although they can also be caused in large lakes and by seismic events occurring at or near the Earth’s surface. The result is a colossal series of waves that only the most baked of surfers would attempt to tackle. The damage is potentially staggering should these waves make landfall and they frequently do.

Makin’ Waves: A How To Guide

fat-man-jumping-in-a-pool

As it was mentioned, tsunamis are most often caused by events that have the energy to displace enough water to give the coastlines of the adjacent continents a salt-water enema. What kind of events might these be?

  • Earthquakes, the result of a sudden and violent wrenching of Earth’s foundations, can kick the water up and around its epicentre into violent protest.
  • Fat celebrities jumping off their gazillion dollar luxury yachts.
  • Landslides can send many tonnes of rock and debris crashing into water, generating large waves that can wipe out beaches, forests and any and all human habitation.
  • Iceberg calving does the same as landslides, except, instead of earth and rock, it sends mammoth-sized chunks of ice and snow (and perhaps the occasional cryogenically preserved mammoth) careening into the ocean.
  • Volcanic eruptions can do both: they can cause incredible landslides of debris into the ocean or a lake and they can cause tremors and earthquakes violent enough to generate tsunamis.

And then there are meteorite strikes that can cause the kind of giant waves portrayed in end-of-the-world movies The Day After Tomorrow and Deep Impact. Even the detonation of nuclear bombs (refer to the totes adorbs film Finding Nemo) can cause billions of litres of previously peaceful water to relocate to your previously peaceful neighbourhood.

Mother Nature Can Be A Real Jerk

Japanese tsunami earthquake 2011
You’d be forgiven for believing this image to have been grossly photo-shopped. To the best of my knowledge it hasn’t been and you can find more incredible photos of the tsunami that inundated the Japanese coastline in March 2011 here: National Geographic News 

Yes, she can. You see, tsunamis – natural disasters in their own right – are typically conceived by natural disasters. As if an earthquake wasn’t enough to rattle your nerves, here comes a solid wall of water and debris to thoroughly spoil your day. This makes them the coarse salt in the wound of the earthquake stricken city – as the Pacific coastline of Japan tragically experienced in March 2011 – and they add insult to injury to anyone who has managed to claw their way through one natural disaster only to encounter another.

Japanese tsunami earthquake 2011
Photo Credit: BBC News

Tsunami means “Harbour Wave” in Japanese and the etymology (“word origin” for the vocabulary handicapped) is brilliant…

Japanese fishermen would climb into their creaky little fishing boats and spend the day out on the swell catching fish as fishermen in fishing boats do. Without noticing anything unusual at all, they’d return to the harbour with their soon-to-be sushi only to find their entire village looking particularly soggy and sorry for itself. And so, tsunamis became known as “Harbour Waves” because they didn’t seem to happen anywhere else.

But, how had something as conspicuous as a giant wave escaped their notice? Surely, the wall of water that is a tsunami would have flung the fishermen and their creaky little fishing boats into an abyssal wave trough before crashing ashore?

The answer would be “not necessarily” and here’s why…

Tsunami Travel

Tsunamis are ocean waves, which means that they travel in a waveform and are governed by the same physical parameters and laws. They have wavelength (λ), which is the distance between the trough and the crest of the wave (refer to graph below); and amplitude (a), the distance from the ocean’s resting point to top of the crest.

waveform physics
If this diagram starts to disinter excruciating memories of Grade 11 trigonometry, bury the anxiety underneath the rubble of your other psychological baggage. It’s just an ocean wave. Nothing more.

In addition to having a wavelength and amplitude, ocean waves travel at a certain speed (ν) and with a certain amount of energy (E). People who study physical oceanography make use of all kinds of fancy looking equations to calculate these various parameters given one thing or another. I used to be very well-versed in these equations, since I majored in ocean and atmospheric science back at university. Since those distant book-bound days, however, an abundance of beer, travel and floozies has done its damnedest to erase my memory of these equations and replace them with sweeter recollections. So, I won’t subject you or myself to any math. Rather, I will explain in concept how physical parameters such as energy and wave speed affect wave size, which is something you’re going to WANT to know if your day on the beach takes an unexpected turn for the disastrous.

2004 Thailand tsunami

Photo Credit: Asian Tsunami Video

Wave Shoaling

Water may travel in waves on the open sea, but each wave is in turn composed of hoards of molecules. So while we see ocean waves as a surface oscillation (an up and then down motion of the water) beneath the surface, the composite water molecules are tracing quite different paths. Water molecules in a wave travel in great ellipses, or circles. The molecules closest to the water’s surface have the most fun on the merry-go-round, which you can see in the diagram below, while those at the bottom, nearest to the ocean floor are seriously considering asking for a refund.

wave shoaling

Photo Credit: The COMET Program

When a wave is far out at sea where the ocean floor lies many thousands of metres away from the surface, these particle motions are hidden beneath the water and are felt at the surface as a swell. Regular ocean waves or “wind waves” with a garden-variety wavelength of 30 to 40 metres (100 to 130 ft.) are experienced as the kind of rolling up-down motion that can turn you green around the gills if you have a delicate constitution.

Tsunamis, on the other hand, have such a large wavelength that for hundreds of kilometres the water would almost seem to go still as you ride up the side of a very long, yet shallow swell, which belies the presence of the roiling monster passing beneath your very feet. Out at sea, thankfully, you’re none the wiser and also totally safe. On shore, however, things are about to get super soggy.

bodhi tree flood

As a wave travels towards land, the sea bottom rises to meet the continental shelf and then the actual shore. The shallower water slows down or decreases the velocity of the incoming waves. What doesn’t change is the amount of energy the wave is carrying. Think about it: energy IS speed. The faster you run, the more energy you burn. By comparison, relinquishing your hung-over self to the sweet oblivion of your couch requires hardly any energy at all.

Unlike your body, however, waves travelling towards the shore may slow down as they breach shallower depths, but the amount of energy contained by their infinite composite particles remains the same. It’s like running a marathon even though you’re facedown in your couch. Oh look! A quarter!

What does this all mean? Well, if a wave isn’t spending all that energy on travelling fast and yet its energy remains the same when it slows down, where the hell does it all go?

The answer is UP!

up_movie_balloons_house-wide

So, as a wave approaches the shore, it slows down and compensates by increasing in height. It then becomes visible above the surface of the ocean as rolling, tumbling water… the kind that stringy haired, gnarly Californians like to surf. Wave shoaling essentially explains this process. It’s how those great undulating swells you experience out on the open ocean turn into breaking waves on the shore.

As tsunamis hit shallower water, the seafloor rears up to become dry land and the entire monstrous size of the wave is revealed. It’s owing to the vast wavelengths (and small amplitudes) of these giant waves that they go by completely unnoticed on the open ocean by those Japanese fishermen. All that they would have felt was a slight sea swell, which would be virtually indistinguishable from any of the other swells they had been sitting on all day long. However, the up-to-200km wavelength of the tsunami and its arrival in shallower waters results in the sudden and eerie recess of the sea – like an anomalous low tide – only to bring it crashing back in a surge of super “high tide” that’s so swift and violent, beach goers have only seconds to plan their exit strategies. If there are palm trees nearby, make sure you pick a sturdy one.

You might be there awhile.

Tsunami Statistics (Say That Three Times Fast)

Desert Island Coastline After Tsunami, Banyak Archipelago

The December 2004 Indian Ocean tsunami that famously struck a number of Thailand’s popular resort towns was generated by a 9.2 magnitude earthquake and killed more than 230,000 people in 14 countries bordering the ocean. Over two million people were negatively affected by this tsunami with the greatest number of deaths being recorded in Indonesia (165,708). The estimated cost of the damage done to countries from Indonesia, Thailand and Myanmar to Sri-Lanka, Kenya and Somalia was $15 billion according to the Disaster Prevention Organization.

The March 2011 Pacific Ocean tsunami that struck Tokyo, Japan, was caused by a 9.0 magnitude earthquake – the largest to have affected Japan on record. The tsunami that made landfall on the 11th of the month reached over 9 metres (30 ft.) in height and caused $300 billion worth of material damage. It also claimed the lives of 15,884 people, according to CNN.com, which is not hard to believe when you take a look at some of the spectacular images to have been published after this disaster.

Class Dismissed: Your Take-Home Message 

Japanese tsunami earthquake 2011

Tsunamis are big waves caused by the voluminous displacement of water via earthquakes, meteor strikes, iceberg calving, nuclear explosion, landslides, volcanic eruptions and Kirstie Alley at the beach during the nadir of her yo-yo dieting. Tsunamis are one cataclysmic event born from another and for this reason, they are devastating and yet deceptive, because we only know about them when they make landfall.

Owing to their unpredictable nature, they are (surprise) hard to predict and not all tsunami warnings culminate in a tsunami. Likewise, there could be no warning at all and you could find your pacific island holiday rudely interrupted. As with all natural disasters, however, they serve as needed reminders that we are by no means the most powerful force at work on this planet, nor will we ever be.

Huge wave tsunami

Virus Apocalypse: It’s All Fun and Games Until Someone Sneezes 

Ebola Virus outbreak 2

There is little else on this Earth quite as chilling as hearing that there has been an outbreak of the Ebola virus. It brings crashing to mind all of those terrifying movies depicting a world ravaged by a fierce virus for which there is no vaccination, no cure and a meagre chance of survival. Almost two years ago, however, the horror of Hollywood imagination made its real life debut in a handful of countries in West Africa and this appearance by one of the world’s worst viruses known to man has left the local population shattered and terrified.

According to the World Health Organisation (WHO), we faced the worst outbreak in recorded history and the death toll increased daily. With this shocking realisation in mind come many questions: what is the Ebola virus? How at risk is the rest of the world to contracting this pathogen and what actually happens to the body once it’s infected? Let’s take a look at the microscopic douche bag that effortlessly, in as little as a few short weeks, showed up mankind for our frailty.

Now Might Be the Time to Cancel that Trip to West Africa 

west-africa-Ebola outbreak distribution-map

Source: World Health Organisation (WHO), Ebola Response Roadmap, February 11th 2015

If you have impending travel plans for Sierra Leone, Nigeria, Guinea and Liberia, now might be the time to reconsider. Your journey of a lifetime might just become your last. At the last count (December 27th 2015) WHO reported that 28,637 people had been officially diagnosed with the Ebola virus in these countries, with 11,315 having succumbed to it.

A 40% death rate might not seem like the apocalyptic scenario you’d associate with an end-of-the-world type virus… that is, until you put yourself in the worn sandals of some poor West African soul. Imagine your doctor telling you that your chance of surviving your illness is 60%! I’d give up all vestiges of civilized behaviour and kill myself with red wine and tequila before that miserable virus could have a chance to get hold of my internal organs. If you think 40% is bad, however, consider the fact that the death rate of the Zaire Ebolavirus has been as high as 90% in the past:

  • 71% in 2007: 187 people dead in the Democratic Republic of Congo
  • 90% in 2003: 128 people dead in Democratic Republic of Congo
  • 75% in 2001-2002: 44 people dead in Democratic Republic of Congo
  • 88% in 1976: 280 people dead in Democratic Republic of Congo

I don’t care how democratic it is, I’m SO removing Congo from my travel plans!

So, while it might sound completely ridiculous to say, the people in the affected areas are at least a little lucky in some glass-half-full kind of way. I do understand this is hard to appreciate when you are bleeding out your bum.

This brings us to the profile of a pathogen so nasty and malicious, it would have had a glittering career in Hitler’s SS.

Profile of a Serial Killer

Ebola virus under microscope

The Ebola virus belongs to a nasty, sadistic family of pathogens called the Flioviridae that essentially cause the body to haemorrhage uncontrollably – that is, to bleed internally and externally and all-aroundernally. There are five different species of Ebola virus, because for some God-forsaken reason one isn’t enough. They are:

  1. Zaire Ebolavirus (EBOV)
  2. Sudan Ebolavirus (SUDV)
  3. Bundibugyo Ebolavirus (BDBV)
  4. Reston Ebolavirus (RESTV)
  5. Taï Forest Ebolavirus (TAFV)

Historically, the three problematic strains of this virus have been the Bundibugyo, the Sudan and the Zaire ebolavirus, the latter of which has been wreaking havoc in West Africa since February 2014. The other two species are, interestingly enough, not typically associated with large outbreaks. In fact, RESTV in particular hasn’t been known to kill anyone ever. Amateur.

A Little Aside: The Ebola virus was named after a river in the Democratic Republic of Congo. It was here in 1976 that the first recorded outbreak occurred.

How Is Ebola Transmitted?

Ebola virus outbreak

You catch Ebola by somehow ingesting the bodily fluids of an infected person. This, given the virus’ tendency to cause flu-like symptoms, uncontrollable diarrhoea and vomiting, is mighty difficult to avoid, especially if you are living in close proximity to the sick person. And this is precisely why the virus tends to spread so quickly amongst family members and to the medical physicians who are trying to treat these patients. Given the lack of proper, sterile medical infrastructure in these poor West African countries and the strange burial ceremonies honoured there (involving kissing and touching the corpses of loved ones passed), this virus is having an utter field day.

Thankfully, in the midst of all the carnage, there’s the fact that the Ebola virus isn’t airborne. That means you can’t get it from breathing in the same air as someone who is infected, so you don’t need to fear the zombie apocalypse the next time some stranger sneezes. Just keep your mouth close and wash your hands regularly.

Symptoms and Signs Your Wife Might Be Cashing In Your life Insurance Policy Soon

Ebola Virus outbreak 4

Once infected, it could take you as little as a few days or as long as three weeks to start showing symptoms. You’ll feel like crap and probably think you have some kind of flu with symptoms that include achy muscles, a monster headache, fever and a sore throat. Meanwhile beneath the surface of your skin all hell is breaking loose…

Ebola takes up residence inside your body’s cells where it begins its merry task of replicating. Once one has become two, they erupt out of their host cell, completely destroying it in the process. This tiny asshole then starts secreting a kind of protein known as “ebolavirus glycoprotein,” which coats the interior walls of your blood vessels, disintegrating them and leaving them more leaky than a submarine with air vents.

Ebola also impedes your blood’s ability to clot, so you essentially become haemophilic… unable to stop bleeding. One sneeze can initially cause your nose to erupt in a crimson plume of infection, while an accidental bump could leave you looking like you escaped a marriage with Mike Tyson. Eventually, if you survive the fever, dehydration, rashes and swelling long enough to experience the next merry phase of the illness, your blood will start to seep out of your blood vessels in a whole-body internal and external haemorrhage. That’s right. You’ll have blood seeping out of your eyes, nose, gums, ears and other unmentionable bodily orifices.

The next few stops on the Ebola train include disseminated intravascular coagulation, shock and then death.

It’s utterly terrifying.

Where Are Your White Blood Cells When You Need Them?

White blood cells

The reason the Ebola virus has such a high death rate is because it is as keen a master of offence as it is of defence. It actually prevents the white blood cells from “hearing” your body’s natural defence alarm. So while the virus completely destroys your body, your white blood cells – the little guys responsible for protecting your body – are just hanging out, playing cards, drinking beer and hitting on platelets. But wait, it gets worse (or more hilarious depending on how morbid your sense of humour is): the Ebola virus remains so undetected by your immune system that it will actually hitch a ride on your white blood cells to other parts of the body. This explains its rapid spread to all of the body’s major organs and systems.

Sweet Jesus, tell me there’s something modern medicine can do to treat it!

Unfortunately, no. There is no cure and no vaccine for the Ebola virus. In fact, scientists are only now beginning to understand how it works, spreads and wreaks so much havoc on the body. I can imagine that the response from lab technicians willing to volunteer to do the necessary research on live virus specimens must be underwhelming.

I know I’d bunk work that day.

Homer Simpson Woohoo!

The only thing doctors can do for Ebola virus patients is keep them comfortable, hydrated and clean. It’s up to your body to do the rest, which is why it’s the strong who typically survive this virus.

Where Did the Ebola Virus COME From?

There is a very important field of specialty dedicated to understanding the origin and spread of harmful pathogens and it’s called “epidemiology.” By pinpointing the origin of a particular virus, we can understand HOW it spreads and therefore how to minimize this spread. It is also possible to infer from the point of origin the necessary clues to develop a treatment or vaccine.

In the case of the Ebola virus, the origin is believed to be fruit bats of the family Pteropodidae and genera Myonycteris torquata, Epomops franqueti and Hypsignathus monstrosus. What causes such devastation to us humans bumbles around quite harmlessly within the living tissues of these rodent aviators. The actual transmission of the virus occurs when someone gets the bright idea to have a bat barbecue or sandwich.

Unfortunately, bats are quite popular on the menu in West Africa.

Cute fruit bat

How could you eat that face?

The Ebola virus has also been documented in monkeys, gorillas, chimpanzees and even certain antelope. The problem here is that uneducated people from the villages in these remote areas have no idea of the danger they put themselves in when they come across a dead animal in the forest. They don’t see the harm in prodding it, eating it, or bringing it home with them for whatever reason. They have no idea that swimming around within the coagulating vessels of this deceased creature is a deadly virus that could lay complete waste to their village in a matter of weeks.

Class Dismissed: Your Take-Home Message

Ebola Virus outbreak 3

When diagnosing the Ebola virus, doctors are instructed to first rule out a host of other potentially fatal illnesses, including the PLAGUE. You know a sickness is really bad when it could be confused with the plague, for crying out loud! And bad the Ebola virus is. To date and at the time of writing, more than 28,000 people are estimated to have been infected in the outbreak in West Africa.

The take-home message of this particular blog on the Ebola virus could pertain to any lethal virus, I suppose. While there are things we can do to help patients fight off infection and emerge victorious (with one hell of a story to tell the grandchildren), we have to be fully cognisant of the irony that something so small – something invisible – could utterly destroy one of the most successful species on the planet. All we can do is hope that a virus similar in action to the Ebola, but deadlier and more uncontrollable in its spread never, ever makes it out of the dark recesses of our planet.

So, kids, wash your hands before you eat and no matter how tempted you are to try new things, never order bat off the menu.

Today's Sciencey LOL

Funny science jokes

It’s true! Icelandic volcano Eyjafjallajokull hit the skids in April of 2010, throwing out such a monstrous ash cloud that flights across northern and western Europe were grounded for almost a week. While thousands of people were trying to figure out how the hell to get home, the rest of the planet was trying to figure out how the hell to pronounce the name of this damn volcano.

Prehistoric Life: A Time When Size Really, Really Did Count

From flying insects that would cave in your car’s bumper to a snake that, at an average 50 feet (15m) long, could easily have eaten a herd of cows for breakfast… there are some pretty large animals to have roamed the Earth in its history and this amazing science video takes us on a journey through them. It also provides us with a relative scale, so that we can appreciate just how f***ing huge they are in comparison with our own tiny selves. Just do yourself a favour and turn your computer’s volume off, because the accompanying music will make you want to bludgeon yourself to death with a brick.

Video Source: “World’s 10 Biggest Animals of All Time” Uploaded by Hybrid Librarian on YouTube channel https://youtu.be/qVftGh4K8JA

How To Bake a Diamond

Beautiful diamond gem

Diamonds have been getting men out of trouble for hundreds of years. They have also been getting men into trouble for hundreds of years. So, what’s so special about diamonds? They’re really pretty, they’re really strong, they have a great pair of tits…

Sorry, that’s Lara Croft.

DIAMONDS are really pretty, they’re really strong and they’re really RARE. They are also the gemstone of choice when it comes to getting hitched because, just like Shirley Bassey sang, diamonds are forever.

Diamonds are Forever… No, Really, They Are!

Aside from their unparalleled resilience and durability, diamonds are spectacular-looking rock minerals. Cut into a complex and intricate array of facets and planes, their refractive light properties send out a kaleidoscope of colour which spans the visible light spectrum, even though the gem itself appears totally translucent and colourless.

What are diamonds? What are they made of? How are they formed?

Yeah, yeah… what you REALLY want to know is what it takes to bake your own diamond so that you can become super rich and super lazy just like Paris Hilton. Well, just like everything else on this planet and in our universe really, diamonds are made of tiny, tiny building blocks. A closer look into their crystal structure tells us just how these highly coveted stones are formed.

Diamond, which is derived from the ancient Greek word adámas, meaning ‘unbreakable,’ is made from one of the most common elements here on planet Earth. It’s in the soil we walk on, in the air we breathe and in the food we eat. Here’s another clue: you’re made from it.

Carbon!

Diamonds from black carbon

It’s the same black crap your science teacher created from burning sugar, the same black crap the graphite in your pencil is made of and the same black crap shown in the picture above. Oh, how unromantic!

Surely such a rare and highly prized stone would be constructed from something equally as exotic and just as rare? Alas, my friends. It is not the building blocks of diamonds that make these stones so special, but rather the conditions under which they are forged. It’s like baking a cake: at the right temperature and with the right cooking time, the cake will come out beautiful, spongy, moist and delicious. At the wrong temperature and cooking time, the same batter will come out black, bitter, inedible and more appropriately used as a bludgeoning weapon.

Carbon + Contaminant = Colour!

Colorful diamond array

We’ve established that diamonds are made from carbon. Actually, they’re made from a carbon allotrope, just so that you geology geeks don’t get a kick out of correcting me. But for all intents and purposes, diamonds are essentially made out of carbon. And carbon is abundant. So, theoretically, you should be able to make your own diamonds! Just don’t tell anybody about it or you could throw a major spanner in the traditional works and symbolism of marriage, just like those pesky homosexuals who want equal rights. I mean, who do they think they are?

Hold on a minute! All it takes is carbon? Then what gives some diamonds their colour? Well noted, my avaricious rapscallions! Diamonds don’t ONLY come as colourless, expensive globules of carbon. Interestingly enough, the unique and very rigid arrangement of carbon atoms in the crystal structure of a diamond (cubic to be exact) makes it difficult for other chemical elements to infiltrate it, causing impurities. This explains why the insides of most diamonds look so beautifully pure and translucent.

Most, but not all.

Diamond, actually, is quite snobby. It only allows very particular elements into its crystal lattice and then again, it only does this on the rare occasion. To give you an idea of just how fussy diamond is, it is estimated that for every million atoms of well-behaved carbon, there is a single alien atom infiltrator. The result: a fantastic analogy for opening your heart to different races, creeds, genders and nationalities.

And colour!

The colour of a diamond can have a huge influence on the amount wealthy housewives get their husbands to pay for them. Blues and greens are exceptionally rare, so they will fetch a high price. Yellows and browns are more common. And there’s nothing like a brown diamond to make you feel REAL special.

Now, gather your cooking implements and turn the oven on… HOT.

Hot temperature oven

Diamond Recipe

What You’ll Need:

  1. Carbon
  2. A choice of chemical impurity or radioactive element (for colour)
  3. Titanium metal
  4. A shovel
  5. Patience
  6. A degree in town planning

Step 1: Take carbon and mix in desired chemical impurity, or pilfer local science laboratory for radioactive element*.

* If you want to bake a blue diamond like the one Rose threw into the ocean at the end, you need to add boron to your mix of carbon. If you want to bake a yellow diamond, you’ll need nitrogen. If you want your diamond to turn a more exotic shade of purple, pink, red or orange, then make sure you bury it close to a radioactive element, such as plutonium or uranium. Other colours, such as black, brown and sometimes even red and pink are caused by structural flaws that harbour dark impurities that only make them appear the colour they are.

Step 2: Put ingredients into an air-tight and incredibly durable box.

Step 3: Phone NASA for left-over titanium to build said box. If you struggle to get past some power-tripping secretary, you can always melt down your brother’s professional tennis racquet; a legacy from the days he actually thought he’d be a professional at anything. If THAT fails, dental implants are made from titanium, but whatever you do, don’t get caught at the morgue.

Step 4: Bury carbon-filled box at a depth of between 140 and 190 kilometres, or 85 to 120 miles, where there exist conditions of immense pressure and temperature. An ambient temperature of at least 1,050 deg Celsius is what you’re aiming for.

Step 5: Bake for at least one billion years, but it could take as long as three billion years. This is where patience comes in handy.

Step 6: Wait for a super-deep volcanic eruption to bring the box of crystallized carbon to the near-surface of the Earth.

Step 7: Plant a flag at the location, build a town, exploit the native inhabitants as your labour force and dig a big hole in the ground to retrieve your creation.

Step 8: Allow to cool before eating.

Class Dismissed: Your Take-Home Message

Beautiful gem diamonds

It’s probably better to buy a diamond than make your own.

This aside, the next time you walk past a jewellery store or stare lovingly at your own engagement/wedding ring, you should look – really look – at the diamond. Know that the real beauty of these radiant gems transcends the price tag affixed to them. Diamonds are approximately half the age of the Earth, they will last your lifetime and millions more like yours and they’re composed of carbon, the very same building blocks as you and me.

The very same material that is forged in the hearts of dying stars.

Real Sprites Caught on Camera!

No, this is not a joke, although I’m not referring to the sprites of fairy tales…

A “sprite” is a whimsical name given to a particularly ephemeral upper atmosphere phenomenon that’s generated by lightning discharges in powerful thunderstorm clouds. Sprites are witnessed as whispy colourful flickering shapes above the thunderstorm clouds and in this video, we watch a team of storm-chasers in hot pursuit of these large-scale electrical discharges.

The things people do for science…

Video Source:Storm Chasing in a Jet – Capturing Upper-atmospheric Lightning” Uploaded by CuriousVideos to YouTube channel www.youtube.com/watch?v=vSCwiQWzMa0.

Original Source: From NOVA – At the Edge of Space by PBS

Fire and Brimstone – the Story of Volcanoes

eruzione Etna volcano
Mount Etna eruption, Nicolosi Catania, Italy

There’s something beautiful about a woman’s rage (not counting the tarts from Geordie Shore) and in no better way is this sentiment illustrated than by Mother Nature’s ire. As terrifying as it is to be at ground zero, from a safe distance, natural disasters are incredibly awe-inspiring and angry volcanoes deserve a top spot for making people go “ooooh” and “aaaaah” and “oh shit…”

Volcanoes are literal pathways from the Earth’s fiery guts to its crusty exterior. But the channels available for the molten rock and gas that spew forth are far too narrow to satisfy the sheer volume of indigestion within and the result is an immense build-up of pressure. The release of this pressure includes, but is not limited to, violent sprays of lava, devastating pyroclastic flows, stratospheric columns of volcanic ash, electrical storms, scalding gas and dust and Hiroshima-type explosions that not only dislocate millions of tonnes of solid rock, but have been reported to be audible many thousands of kilometres away from the point of origin.

Vesuivio_Eruzione eruption volcano
Source: “Vesuivio Eruzione April 26th, 1872” by Giorgio Sommer – Own work. Licensed under Public Domain via Wikimedia Commons

Volcanoes have the potential to send species to extinction, yet at the very same time, they nourish the biosphere in an appreciable radius around them (volcanic ash is highly fertile). Volcanoes are magnificent and a wonderful example of how the surface of our planet is in a constant state of dynamism.

Where Not To Go On Summer Vacation

Planet tectonics plate diagram

Volcanoes typically form at the convergent and divergent boundaries between the enormous shifting tectonic plates that comprise the Earth’s crust (see gorgeous image above). It is here that the seams of the Earth permit plumes of its molten interior to travel towards the surface. But as it was mentioned, the surface-bound transport of this material is anything but a six-lane highway. It’s more like a gravelly, pothole-ridden country road. The gas and molten rock that are trying to get from A to B encounter rigid rock and the cracks they exploit along their journey are incredibly narrow. A build-up of pressure results in a potentially explosive situation, so that when something finally gives, the results are disastrous for the local biology: human habitation included.

Volcanoes also form over features called “hot spots”, which don’t necessarily occur near plate tectonic boundaries (see diagram below). The Hawaiian Islands – all of them formed by volcanic activity in the middle of the Pacific Plate – are a prime example of this.

volcanic-hot-spots

There are several scientific theories that seek to explain what hot spots are and a popular one is that they are upwelling intrusions of molten material (mantle plumes) that originate at the boundary between the Earth’s core and mantle. The exact depth of this varies, but the Hawaiian hot spot is estimated to be 3,000 km deep. That’s 9,842,520 ft. for those of you in ‘Merica.

Volcano Classification

There’s more to volcanology than your stock standard angry Earth pimple. Volcanoes come in many shapes, sizes and compositions. What happens at the surface – what we see and experience when volcanoes awake from their slumber – is dependent on a suite of factors and an especially important one is the composition of the magma that is trying to escape the lithified constraints of the crust.

Lava Composition

Lava flow in Hawaii

Rock that is rich in silicates tends to form chunky, viscous slow-moving magma. This subset of liquid rock is in no hurry to go anywhere and tends to contribute to terrible congestion. It also has the particularly nasty habit of trapping gas, which is why things can get explosive. Since Hawaii is no stranger to seismic activity, its inhabitants have coined a word for this particular magma and it’s pāhoehoe.

At the other end of the spectrum, you get magma that doesn’t contain a lot of silicates, but is rather rich in ferrous (iron) compounds. This magma – ʻAʻa, pronounced “ah ah” – get’s extremely hot and tends to flow hard and fast. If you’ll excuse the crass analogy, the difference between pāhoehoe and ʻAʻa is much like the difference between constipation and Delhi belly.

Both, however, are extremely uncomfortable.

Magma isn’t, of course, one or the other. There is a vast spectrum of mineral compositions between, but by understanding the difference between one extreme and the other, we can begin to understand how different kinds of volcanoes are formed.

Cone, Shield and Stratovolcanoes

If there’s one thing to be said for geologists, it’s that they don’t mess around with terminology. The name bestowed upon a volcano is as transparent as a wet T-shirt.

Cone (Cinder) Volcanoes

Bromo volcano in Indonesia
Mount Gunung Bromo (Indonesian island of Java): A classic cinder or cone volcano

Cone volcanoes, also known as cinder cones, generally consist of a hill that can be anywhere from 30 meters (98 ft.) to 400 (1,312 ft.) meters in height. Formed from the eruption of materials that are riddled with gas, crystals and a hodgepodge of fragmented rock. To see an example of this kind of volcano, put on your sombrero, crack open the tequila and get on a plane to New Mexico. There, you will find a spectacular volcanic field called Caja Del Rio, which comprises more than 60 cone volcanoes. If the prospect of New Mexico doesn’t appeal, you can always bum a lift on the next scientific mission to Mars or the moon, both of which are believed to feature this type of volcano.

Shield Volcanoes

Kohala-Landsat Hawaii shield volcano
Kohala Mountain, the oldest of Hawaii’s five volcanoes. The entire island is a massive shield volcano. Source: By USGS (source usage) via Wikimedia Commons

Shield volcanoes have a much broader profile than cone volcanoes and, as the name suggests, are shaped like shields. Bet you didn’t see that one coming. These beasts are formed from the eruption of very runny lava that tends to escape the Earth’s crust before causing too much mayhem as a result of a build-up of pressure. Shield volcanoes are, by comparison, the placid elderly aunt of volcanoes and are most commonly found at oceanic tectonic boundaries. Oceanic plates aren’t usually rich in silicates, which explains why the magma produced here is more felsic in composition, hence its lower viscosity. Skjaldbreiður in Iceland (say that three times fast) is an example of a shield volcano. The Hawaiian Islands, which have formed almost smack bang in the middle of the Pacific Plate over a “hot spot,” are also shield volcanoes.

Pyroclastic_flows_at_Mayon_Volcano
In June of 2013, the Mayon stratovolcano in Albay, Philippines, reached Level 1 alert level due to what the Philippine Institute of Volcanology and Seismology refers to as “abnormal behavior”.

Stratovolcanoes 

Stratovolcanoes, or composite volcanoes, are the tri-polar member of the volcanic family. They look like your typical volcano but actually consist of alternating layers of different kinds of erupted material as the above diagram depicts. Stratovolcanoes produce a range of eruptions depending upon their mood and these include chunky cinders, choking ash and molten rock (lava). One of the best known (and least loved) of these volcanoes is Mount Vesuvius, which is located in Stromboli, Italy. This one was responsible for the notorious levelling of the cities of Pompeii and Herculaneum in AD 79, killing 16,000 people. It is estimated that Mount Vesuvius released 100,000 times the energy liberated by the Hiroshima bomb.

Volcanic Hazards

Mount Pinatubo Explodes
Run? Source: “Point of View Photos” Huffington Post

When volcanoes become active, a number of things can happen, none of them good if you’re fond of life. One of the most devastating of these consequences is ash. You wouldn’t think so… ash is soft and white. How on Earth could it possibly inconvenience you the way a searing hot lake of lava might? Stratovolcanoes are especially fond of explosive eruptions, which send voluminous clouds of ash into the atmosphere and cascading down their slopes.

This ash, however, isn’t the kind you find in your barbeque pit after a night of camping, beer and sing-a-longs. It’s mixed with gas that is hot enough to disassociate your atoms. These eruptions send roiling clouds of gas, dust, ash and other debris down the mountain, which devastate anything organic in their path, leaving behind a scene that looks like a bomb went off in a cocaine factory.

Extinct, Dormant and Active Volcanoes: The Good, the Bad and the Ugly

Stromboli volcanic eruption3

Volcanoes are dangerous creatures. So an apt analogy for the popular classifications of these geological features would be your mother. When she has a gin and tonic in her hand (dormant), you may want to make plans for the evening. When she’s 10 G&T’s down (active), it’s time to execute those plans and get the hell out of the house. When she’s passed out on the couch (extinct), it’s safe to come home, although my recommendation to you would be to move out your childhood home and get yourself an education.

Extinct volcanoes, such as the Netherland’s Zuidwal and Shiprock volcanoes, are no longer considered to be active at all because they don’t have a supply of magma. They also have no documented history of indigestion. Dormant volcanoes, on the other hand, are known to have erupted at some stage in recent history. They may be quiet, but that doesn’t mean they can’t suddenly awaken. Mount Vesuvius (Gulf of Naples) was a purring kitten before it went psycho in AD 79, as was Mount Pinatubo (Philippines) prior to its epic tantrum in 1991. The latter is now considered an active volcano, which is one that has exhibited recent activity and is therefore a potential hazard to all within its vicinity.

Krakatoa

krakatoa-volcano-1883-eruption

If you’ve ever had a fight with Mexican food and lost (who hasn’t?) then integrating “Krakatoa” into your vocabulary is a wonderful idea if you need help explaining exactly what just happened to you to the flat mate who is next in line for the bathroom. You may not be absolved for your sins, but it’ll get you a laugh or two.

Krakatoa is a first class example of what happens when Mother Nature gets really cross and decides to let off a bomb that makes Hiroshima look like a fart. In 1883, the build-up of pressure under the Earth’s crust between the islands of Sumatra and Java in the Sunda Strait was so immense that it caused an apocalyptic-sized explosion, sending a once much bigger island into the stratosphere.

The Krakatoa eruption was reported to have been heard almost 5,000 km away (the loudest sound ever made in recorded history) and the resultant shock waves sent barograph needles oscillating violently off the page. Over 36,000 people were killed by the eruption: if not by the devastating pyroclastic flows and falling debris, then by the tsunamis that followed. The dust catapulted into the atmosphere caused stunning sunsets around the world for months after the eruption.

Too bad colour photography wasn’t in vogue in the 19th Century.

krakatoa - krakatau volcano map
Source: Krakatau Tour Website: A map of ex-Krakatoa and the now much smaller island of Anak Krakatau, which means “son of Krakatoa”. The dotted line represents the size of the island before it went nuclear.

Class Dismissed: Your Take-Home Message

If you ever needed to respect the fact that we are just not in control of our natural environment, then stand next to an active volcano. From lakes of lava and earthquakes that shake the foundations of your stick hut to falling debris and scalding hot pyroclastic flows that choke the biosphere, volcanoes are creatures to be respected, studied and understood. If ever there were an item to put on your bucket list, it would be to stand next to an active volcano and feel the heat of Earth’s exterior lap at your cheeks. Just make sure you’ve ticked off the rest of those bucket list items before you do so…

Mount Redoubt Eruption
“Mount Redoubt Eruption” by R. Clucas – Licensed under Public Domain via Wikimedia Commons. Mount Redoubt is a stratovolcano and is part of the very seismically active Aleutian Range in Alaska.